Rumour veracity classifier

User generated content such as tweets often make claims that are unsubstantiated and possibly untrue. This service attempts to classify whether a text is discussing a rumour that is true, false or unverified. Our approach makes use of only the tweet content, which it passes through LSTM units that learn to distinguish between the three classes we aim to predict (true, false or unverifiable). However, the unique part of our approach is that prior to passing the tweet to the LSTM layer, it first looks within the tweet for some recurring information that is typically used by others to spread rumours, and makes adjustments on the input -- words carrying useful information are kept as they are, and others are downgraded in terms of contribution. This is achieved through attention layer implementation. We evaluated our approach on the RumourEval shared task 2017 test data and achieved over 60% accuracy, which is currently the state-of-the-art performance for this task.

Default annotations
:Veracity Annotation spanning the whole text with features "rumour_label" (true, false or unverified) and "confidence" (the confidence score)
1,200 free requests / day
Larger batches £0.80 / CPU hour

Use this pipeline

Single documents

You can process up to 1,200 documents per day free of charge using the REST API, at an average rate of 2 documents/sec. Higher quotas are available for research users by arrangement, contact us for details.

The API endpoint for this pipeline is:

Create API Key

Batches of documents

You can process any amount of data with this pipeline on a pay-as-you-go basis, for £0.80 per hour. This can be data you upload yourself, data you collected from Twitter, or the results of a previous job.

Reserve a job